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Motivation

Dynamical systems:
in which a function describes the time dependence of a point in a geometrical space.
we only know certain observed or calculated states of its past or present state.
dynamical systems have a direct impact on human development.

⇒ The importance of studying:

synchronization

behavior

robust control

Jawher Jerray (LIPN) An Approximation of Minimax Control using Random Sampling and Symbolic Computation 3 / 15



Motivation Description of the method biochemical process example Conclusion References

Robustness

A control is considered robust if the dynamical system still stable, which means
small perturbations to the solution using this control lead to a new solution that
stays close to the original solution forever.
A stable system produces a bounded output for a given bounded input.
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Description of the method

We consider a dynamic system with control u(·) and a bounded disturbance
function d(·) over a domain D). The control u(·) is a piecewise constant function
that changes of value only at times t = τ, 2τ, . . . .

The set of possible controls of the system for t ∈ [0,T ] is finite and can be
described by the set U ≡ UK where T = Kτ and K ∈ N.

We suppose given a cost function C : Rn × UK → R≥0, which allows calculating
the value

∫ T
0 C(x(t), u(t))dt for any solution x(t) of ẋ(t) = f (x(t), u(t), d(t)) for

t ∈ [0,T ].

The minimax method aims to find a control v defined by:

v = argmin
u∈UK

max
x(·)

Jz0,ε(x(·), u(·))

with Jz0,ε(x(·), u(·)) ≡
{ ∫ T

0 C(x(t), u(t))dt | ∃d(·) ∈ D : ẋ(t) =
f (x(t), u(t), d(t)) for t ∈ [0,T ] ∧ x(0) ∈ B(z0, ε)

}
.

We propose here a simplified method composed of two steps.
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f (x(t), u(t), d(t)) for t ∈ [0,T ] ∧ x(0) ∈ B(z0, ε)

}
.

We propose here a simplified method composed of two steps.

Jawher Jerray (LIPN) An Approximation of Minimax Control using Random Sampling and Symbolic Computation 5 / 15



Motivation Description of the method biochemical process example Conclusion References

Description of the method

First Step:
Obtain an upper-bound Kz0,ε(u(·)) of maxx(·) Jz0,ε(x(·), u(·)) using an
Euler-based symbolic computation method, with:
Kz0,ε(u(·)) ≡ max

x(·)∈B(x̃u(·)
z0

(·),δu(·)
ε,D (·))

{
∫ T

0 C(x(t), u(t))dt},

where
x̃u

z0
(·) denotes Euler’s approximate solution of ẋ(t) = f (x(t), u(t), 0) for t ∈ [0, T ] with

null perturbation (i. e., d(·) = 0) and initial condition z0 ∈ Rn,
δ

u(·)
ε,D (·) denotes the upper-bound of the distance between an exact solution and an Euler

approximate solution,
x(·) ∈ B(x̃u(·)

z0
(·), δu(·)

ε,D (·)) means, for all t ∈ [0, T ]: x(t) ∈ B(x̃u(·)
z0

(t), δu(·)
ε,D (t)). In

particular x(0) ∈ B(z0, ε).1

1y ∈ B(z, a) with y, z ∈ Rn and a ≥ 0 means ∥y − z∥ ≤ a where ∥ · ∥ denotes the Euclidean norm.
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Description of the method

Second Step:
We will not consider the absolute minimum, but a probable near-minimum of
Kz0,ε(u(·)) (see [Vid01]).

The probably approximate near-minimum of Kz0,ε is obtained by drawing
randomly N control u1, · · · , uN of UK , i. e., by generating N independent
identically distributed (i.i.d.) samples u1, · · · , uN of UK , with a uniform probability
(i. e., with probability 1/|U|N ) then by taking Kz0,ε(u

∗
N) with

u∗
N = argminu1,··· ,uN

Kz0,ε(ui ).
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Description of the method

Advantage of the method:
Avoid the excessive complexity of minimax methods,

Use of samples with large size, as is often the case in statistical learning.

Take into account constraints on the state of the system during its evolution.
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Biochemical process example

Consider a biochemical process model Y of continuous culture fermentation
(see [HouskaCDC09]) and initial condition in B0 = B(x0, ε) for some x0 ∈ R2 and
ε > 0 (see [BQ20]):. Let Y = (X ,S,P) ∈ R3 satisfies the differential system:

dX
dt

= −DX(t) + µ(t)X(t)
dS
dt

= D
(
Sf (t)− S(t)

)
− µ(t)X(t)

Yx/s
dP
dt

= −DP +
(
αµ(t) + β

)
X(t)

The model is controlled by Sf ∈ [Smin
f ,Smax

f ] and the specific growth rate µ : R → R of
the biomass is a function of the states:

µ(t) = µm

(
1 − P(t)

Pm

)
S(t)

Km + S(t) + S(t)2
Ki

[BQ20] J. B. van den Berg and E. Queirolo, “A general framework for validated continuation of periodic orbits in
systems of polynomial ODEs,” Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN:
2158-2491. DOI: 10.3934/jcd.2021004.
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Biochemical process example

Maximize the average productivity presented by the cost function:

Jz0,ε(x(·),Sf (·)) =
1
T

∫ T

0
DP(t)dt

While satisfying the constraint on the state X :

1
T

∫ T

0
X(t)dt ≤ 5.8
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Biochemical process example

The set S ⊂ Rn ≡ [3, 8]× [10, 28]× [15.5, 25.5].

The codomain [28.7, 40] of the original continuous control function Sf (·) is
discretized into a finite set U. After discretization, Sf (·) is a piecewise-constant
function that takes its values in the finite set U made of 2 values uniformly taken in
{28.7, 40}.

We take: z0 = (6.52, 12.5, 22.40), τ = 3, ∆t = τ/1002, T = 48, K = T/τ = 16.
We consider an additive disturbance d with d(·) ∈ D = [−0.05, 0.05].

In total, we have 2k = 216 possible control cases.

2∆t is the “sub-sampling’ parameter of the Euler scheme.
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Biochemical process example

Left: control u∗ satisfying the constraint on X , obtained by selection among 655 samples picked randomly; right:
P(t) under u∗ without perturbation (red curve) and with an additive perturbation d ∈ [−0.05, 0.05] (green curve)
over 1 period (T = 48) for ∆t = 1/400 and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4).

We randomly pick one sample over every 100 possible controls, which gives
216/100 ≈ 655 samples.

We get: Kz0,ε(u
∗) = 3.1618 (the constraint on the state X is satisfied since

1
T

∫ T
0 X(t)dt = 5.782 ≤ 5.8). The CPU computation time of this example is

7 seconds.
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Biochemical process example

Left: control u∗ satisfying the constraint on X , obtained by selection among 6554 samples picked randomly; right:
P(t) under u∗ without perturbation (red curve) and with an additive perturbation d ∈ [−0.05, 0.05] (green curve)
over 1 period (T = 48) for ∆t = 1/400 and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4).

We randomly pick one sample over every 10 possible controls, which gives
216/10 ≈ 6, 554 samples.

We get: Kz0,ε(u
∗) = 3.1667. (the constraint on the state X is satisfied since

1
T

∫ T
0 X(t)dt = 5.794 ≤ 5.8) The CPU computation time of this example is 18.69

seconds.
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Biochemical process example

Left: control u∗ satisfying the constraint on X , obtained by selection among 65536 samples picked randomly; right:
P(t) under u∗ without perturbation (red curve) and with an additive perturbation d ∈ [−0.05, 0.05] (green curve)
over 1 period (T = 48) for ∆t = 1/400 and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4).

We consider all the possible controls, which gives 216 = 65, 536 samples. (The
computation is tractable in this example because the set U contains only 2 modes,
and because the length K of the horizon is moderate.)

We get: Kz0,ε(u
∗) = 3.1677 (the constraint is satisfied since

1
T

∫ T
0 X(t)dt = 5.7995 ≤ 5.8). The CPU computation time of this example is 200

seconds.
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Conclusion

Conclusion

We showed that the simple combination of random sampling with a symbolic
computation method allows to deal with robust optimization problems for nonlinear
systems on non-convex domains.

The method doesn’t contain sophisticated theories such as analysis of viscosity
solutions of the Hamilton-Jacobi-Bellman-Isaacs equation.
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